
"Software Engineering at Google: Testing"
by

Winters,
Manshreck,

et. al.

One
Sheet
Summary

Original content and layout copyright Charles L Flatt. All other content is owned by the copyright holder. This document is for educational purposes only and may not be sold.

"The adoption of developer-driven automated testing has been
one of the most transformational software engineering practices at Google."

TEST SIZE
small run in single process
medium run on single machine
large run wherever they want

TEST SCOPE
narrow (unit) class/method
medium (integra�on) interac�ons
 between small number of
 components
large (end-to-end) interac�on of
 several dis�nct parts of the
 system.

IMPORTANT TEST QUALITIES
Speed and Determinism
Slow tests risk being skipped.
Flakey (nondeterminis�c) tests
cost inves�ga�on �me.

Herme�c, clear, consise
Contains all and only
info required to run

Accurate
Invokes system same as user
would

Strive for this Avoid antipatterns

Code coverage only measures
that a line was invoked,

not what happened as a result.

Techniques for writing good tests can be
the opposite for writing good production code.
"It can often be worth violing the DRY principle
if it leads to clearer tests." This implies TDD

is hard because of context-switching, and writing tests
is a different skill than writing production code

"The openness of our codebase . . . implies that many people will make changes in a part of the codebase owned by someone else."

Brittle Tests
* fail due to unrelated changes
* over-specify expected outcomes
* rely on complicated boilerplate
* misuse mocks

Creating a testing culture
"Any mandate on how to develop code would be seriously counter
to Google culture and likely slow the progress, independent of the
idea being mandated. The belief was that successful ideas would
spread, so the focus became demonstrating success."

Instead:
* Include testing info in employee orientation
* Provide clear test adoption techniques and metrics
* Raise awareness (Testing on the Toilet)

"Changing the testing culture takes time." QA should do what humans do best: creative discovery.
In short, exploratory testing.

Unchanging (ideal)
Unless requirements
change

Prefer tes�ng state over interac�on
Prefer tes�ng behaviors over methods
Prefer clear, useful, even verbose test names
Prefer realism or isola�on (mock only when needed)

Google recommends manda�ng which tes�ng frameworks everyone uses.

Mocking Framework
Easy way to get doubles and stubs
Double
Object/function stands in for real implementation.
Fake
Behaves similar to prod, e.g. in-memory database. (And
yet, "the team that owns the real implementation should
write and maintain a fake."). If unavailable, wrap the API
to create a fake.
Stub
Specify return values
Interaction
Verify function was called

Use these based on their applicability and fidelity. They
can only be used if the code base is testable
(dependency injection). Remember: the API behavior
you're mocking might change!

"The primary reason larger tests exist is to address fidelity."

Challenges: who owns the test's failure? Lack of standardization.

New code accidentally only testable via E2E ("legacy within days")

"Tests that involve both frontends and
backends become painful because user interface
(UI) tests are notoriously unreliable and
costly: UIs often change in look-and-feel ways
that make UI tests brittle but do not actually
impact the underlying behavior."

MANUAL TESTING DOESN'T SCALE
The cost increases exponentially or worse
as the system grows. At the same time,
testing efficacy decreases, leading to more
bugs, more fix time, more cost, and slower
feature and release cycles.

Automated testing saves time, decreases stress,
 and increases profit.

